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Aggregation of mass by perfectly inelastic collisions in a one-dimensional gas of 
point particles is studied. The dynamics is governed by laws of mass and 
momentum conservation. The motion between collisions is free. An exact 
probabilistic description of the state of the aggregating gas is presented. For an 
initial configuration of equidistant particles on the line with Maxwellian velocity 
distribution, the following results are obtained in the long-time limit. The prob- 
ability for finding empty intervals of length growing faster than t 213 vanishes. 
The mass spectrum can range from the initial mass up to mass of order t 2/3. 
Aggregates with masses growing faster than t 2:~ cannot occur. Our estimates are 
in accordance with numerical simulations predicting t - t  decay for the number 
density of initial masses and a slower t -2/3 decay for the density of aggregates 
resulting from a large number of collisions (with masses ~ t2/3). Our proofs rely 
on a link between the considered aggregation dynamics and Brownian motion 
in the presence of absorbing barriers. 

KEY WORDS: Inelastic collisions; aggregation dynamics; mass spectrum; 
long time: Brownian motion. 

1. INTRODUCTION 

T h e  a im of  th is  p a p e r  is to e s t a b l i s h  s o m e  exac t  resu l t s  c o n c e r n i n g  the  

m e c h a n i s m  of  ba l l i s t ic  a g g l o m e r a t i o n  o r ig ina l l y  s t ud i ed  by  C a r n e v a l e  

et  al. Ill W e  c o n s i d e r  a o n e - d i m e n s i o n a l  gas  of  p o i n t  pa r t i c les  m o v i n g  in R 1 

a n d  i n t e r a c t i n g  via per fec t ly  ine las t ic  col l i s ions .  A t  the  in i t ia l  m o m e n t  t = 0 
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the particles start their motion from points x j ~ R  ~ with momenta pj and 
masses mj, j =  O, 4-1, __ 2 ..... The numbering is such that 

x j<xj+ I (1.1) 

It is also assumed that in any bounded interval there is a finite number of 
particles. The interaction between the point masses reduces to binary colli- 
sions. The motion between collisions is free. In one dimension only the 
nearest neighbors can collide. When two particles j and j +  1 undergo the 
first collision they instantaneously merge, forming a single point mass 
mj+ mj+j with momentum pj+pj+ 1. At later times the aggregated masses 
follow the same dynamical laws. They move freely between the collisions. 
When two aggregates with masses Mi, Mi+~ and momenta Pi, Pi+~ meet 
they merge and a new point mass M~+ M~+~ continues the motion with 
momentum P~+P~+~. The instantaneous binary collisions are thus per- 
fectly inelastic, governed by the mass and momentum conservation laws. In 
the course of time the number density of the gas decreases (each collision 
replaces two particles by a single one). The irreversible rarefication of the 
system is accompanied by the appearance of massive particles moving 
slower and slower. 

Before engaging in the general analysis let us consider for the sake of 
introduction a peculiar initial condition allowing for the complete analytic 
description of the aggregation process. We suppose that at t = 0  all 
particles but one are at rest. The moving particle j =  0 starts to propagate 
from the origin with mass mo and momentum Po > 0. On its way it collides 
and merges with particles at rest whose mass distribution is described by 
the density 

p ( x ) =  ~ rnj6(x--xj) (1.2) 
j=l 

The mass of the propagating aggregate increases. In order to study the law 
governing the growth of the mass we consider the equations expressing the 
momentum conservation 

P(t) =Po 

and conservation of the mass 

M(t) =mo + I :  I'l 

where 

(1.3) 

dxp(x)  (1.4) 

fo P(r) X(t) = dr M(z-'--~) 

is the position of the aggregate at time t. 

(1.5) 
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Let us examine here a particularly simple case of equally spaced 
particles with the same mass m, 

p ( x ) = m  ~ 6 ( x - j a )  (1.6) 
./= 1 

We also put mo=m. Equations (1.4) and (1.6) imply the inequality 

pX(t) <~ M(t) <~ m + pX(t) 

where 

(1.7) 

m 
p = -  (1.8) 

a 

As in the long-time limit X(t) tends to infinity, we asymptotically find 

i~ dr M(t) ,~pX(t)=ppo M(r) (1.9) 

where the second equality follows from Eq. (1.3). Equation (1.9) can be 
readily solved yielding the asymptotic law 

M(t) ~ (2ppot) 1/2 t ~ ~ (1.10) 

It is interesting to note that the result (1.10) can be simply found by 
considering the continuum limit 

m 
m ~ 0 ,  a ~ 0 ,  p = - - = c o n s t  (1.11) 

a 

Applying it to Eq. (1.4), we find that the equality 

M(t )=pX( t )  (1.12) 

holds for any t > 0 ,  and thus also the formula M(t)=(2ppot) ~/2. The 
appearance of the asymptotic law (1.10) for finite times is not surprising, 
as the formation of mass M ( t ) > 0  in the limit (1.11) requires an infinite 
number of collisions. 

Our object in this paper is to derive some rigorous estimates concern- 
ing the long-time ]aehavior of the aggregating gas in the case where all the 
particles have the same initial momentum distribution. In ref. [1] the 
growth of the average mass according to the power law t 2/3 has been found 
on the basis of postulated universal scaling properties of the ballistic 
agglomeration. Correspondingly, because of mass conservation, the number 
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density must decrease a s  t -2/3.  The t 2/3 law turns out to be in agreement 
with numerical studies using molecular dynamics simulations. 1~-3~ For 
spotially homogeneous initial distributions the change from t ~/'- behavior 
found in (1.10) to the faster l 2/3 growth of the aggregated mass reflects the 
passage from essentially one-body dynamics (all particles at rest but one) 
to a truly many-body interacting system. Mean-field-like theories also have 
been proposed without, however, any rigorous justification. ~2' 4~ The discus- 
sion in ref. 2 refers to the Smoluchowski rate equation for the mass concen- 
trations, whereas the results of ref. 4 rely on a closure of the hierarchy 
describing the exact dynamics of the system. It thus seems important to 
provide a rigorous treatment of the aggregation process, and the present 
paper is a step in this direction. 

The general question of the laws governing the dynamics of aggrega- 
tion of mass has a long history and a big literature. In most cases the 
motion of particles between inelastic collisions is supposed to follow some 
stochastic process. To get the flavor of the type of theoretical approaches 
which have been elaborated we refer the reader to the reviews in refs. 5 and 
6. Quite recently some models with no mechanical counterpart have been 
also studied. 17~ 

In Section 2, an exact probabilistic description of the state of the 
aggregating gas at any time t is derived. The formulation is sufficiently 
general to allow for any choice of the configurational and momentum dis- 
tribution of the initial particles. We emphasize again that probabilistic 
aspects enter only through the statistics of initial data. The dynamics is 
entirely deterministic. Then we specialize the general framework to the 
model defined by an initial configuration of equidistant masses m [as in 
(1.6)] and independant Maxwellian velocity distribution. The analysis 
focuses on probabilities to find in a given interval exactly one particle in a 
prescribed state, or no particles at all. The main observation is that these 
probabilities exhibit a remarkable exact scaling property which already 
singles out the priviledged role of the 12/3 power law. Looking for masses 
of order t 2/3 at time t is the same as looking for masses of order one with 
initial masses reduced to r o t - z / 3 .  Using the bounds established in Section 3, 
we characterize in Section 4 various aspects of the long-time behavior. 
More precisely, we estimate the probability to find a mass of order t ~', 
~,/> 0, in an interval of fixed length for large time. If ~, > 2/3, we prove that 
this probability is vanishingly small [in fact O ( e x p ( - C t 3 ~ ' - 2 ) ,  C > 0 ) ] .  
However, if 2/3 >/~ ~> 0, this probability is larger than or equal to C t -  ~ § ~'/'- 

The latter conclusion holds also for the mass density. For ~ =2/3,  our 
result is therfore in agreement with the t 2/3 law. For 7 = 0, we find that 
there is still a probability as large as t - t  to find aggregates of a fixed 
number of initial masses. This information is also in accordance with the 
numerical indications of refs. 2 and 3, where the density of particles with 
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small masses appears to obey a t - I  law. In fact, in any interval, we expect 
to find a whole mass spectum ranging from initial masses m to aggregated 
masses of order t 2/3 with increasing probabilities ranging from t - l  to t -2/3. 

As for as the mathematical treatment is concerned, we do not proceed 
with a direct study of the dynamics in configuration space. The formulation 
of Section 2 introduces naturally a related stochastic process in momentum 
space, consisting of the evolution of the momentum of an aggregate in 
terms of the increase of its mass. When the initial velocity distribution is 
Maxwellian, it turns out that this process is nothing else than Brownian 
motion limited by moving barriers. This provides a convenient tool to obtain 
the estimates of Section 3 (technical parts are relegated to Appendices 
A and B). In the present situation, these estimates are not sufficient to 
determine the exact time asymptotics (a more refined control on the excur- 
sions of the Brownian motion is needed), and we will come back to this 
point in future work. The paper ends with concluding remarks on possible 
generalizations and open questions. 

2. P R O B A B I L I S T I C  F O R M U L A T I O N  

In order to describe quantitatively the effect of the dynamics we shall 
focus our attention on a finite interval of length 2 L  Let us begin our study 
by deriving the formula for the probability /~l~ that there is no 
particle within the interval ( - L ,  L) at the time t > 0 .  Consider an initial 
particle j. If at time t is is found, separately or as a part of an aggregate, 
within the interval [L, oo), then all the masses to the right of it (particles 
j +  I, j +  2,...) lie also therein. Indeed, the dynamics allows merging, but 
excludes the possibility of changing the initial linear ordering. Similarly, 
if particle i is found at time t within the interval ( - o o ,  - L ] ,  the same 
is also true for all the masses to the left of it (particles i -  1, i -2, . . . ) .  It 
follows that the initial states contributing to /~t~ L) are precisely those 
containing a pair of neighboring particles j and j +  1 which at time t are 
found (separately or merged with others) within the intervals ( - o o ,  - L ]  
and [ L, oo), respectively. 

In order to derive a necessary and sufficient condition to find particle 
j +  1 within [L, oo) we consider the motion of the r-particle cluster { j +  1, 
j + 2  ..... j + r } .  The position of the center of mass of such a cluster will be 
denoted by X~+ ~. The lower index j +  1 indicates the particle at the left 
extremity, and the upper index r gives the number of initial neighboring 
particles belonging to the cluster. At time t the center of mass occupies the 
position 

k ,If X~+,(t) = (mj+,x j+,+pj+, t  mj+, (2.1) 
S =  J I S =  I 
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and lies within the system of point masses which developed from the initial 
cluster { j +  1, j + 2  ..... j+r}. Hence, particle j + l  starting from the left 
extremity can never appear to the right of point X~+ ~(t). We conclude that 
the infinite set of inequalities 

r > _  X~+ ~(t) ~- L, r = 1, 2 .... (2.2) 

represents a necessary condition for finding mass j +  1 within [L, oo) at 
time t. It is also a sufficient condition. Indeed, in the event under considera- 
tion particle j +  1 appears at time t isolated or as a part of an aggregate 
formed by merging with its right neighbors. So its position necessarily 
coincides with one of the points )(jr+ ~(t). 

In an analogous way one can show that the necessary and sufficient 
condition to find particlej within the interval ( -  0% - L ]  is represented by 
the inequalities 

X}_r+,(t)<<.-L, r = l , 2  .... (2.3) 

where in accordance with our notation X}_r+~(t) is the position of the 
center of mass of the r-particle cluster { j -  r + 1, j -  r + 2 ..... j}. Introducing 
the unit step function 

O(x)= { 1' O, x>~O x < O  (2.4) 

we can associate with inequalities (2.2) and (2.3) the characteristic function 

fi  O{X;+,(t)-L} O{-L-X;_r+,(t) } (2.5) 
r = l  

The infinite product (2.5) equals 1 or 0, depending on whether particles j, 
j +  1 are within the intervals ( - ~ ,  - L ] ,  [L, ~ ) ,  respectively. To different 
values of j there correspond disjoint sets of initial conditions. The proba- 
bility /~c~ I L) for the absence of particles within the interval ( - L ,  L) at 
time t is thus given by the formula 

{0 } /~l~ I L) = 2 O{X2+,(t)-L } O{-L-X}_r+,(t) } (2.6) 
J �9 I 

where the brackets ( . . - )  denote the average over the initial distribution 
of masses, positions, and momenta. 

As a next step of our analysis we consider the derivation of the 
formula for the probability �9 density I~(X, P, M; tlL) for finding in the 
inverval ( - L ,  L) at time t exactly one particle at point X with momentum 
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P and mass M. Suppose that  mass M has been formed by merging of n 
initial particles { j +  1, j +  2 ..... j +  n}, so that 

M=m~+ l + rnj+ 2 + ... + mj+,, (2.7) 

Then masses { j , j -  1,... } and { j +  n + l , j +  n + 2,... } must  group within the 
intervals ( - ~ ,  - L ]  and [L, ~ ) ,  respectively. According to the previous 
analysis, the corresponding characteristic function reads 

fi O{-L-X~i-r+,(t)} O{X~i+,,+,(t)-L } 
r = l  

(2 .8 )  

The center of mass of particles { j  + 1, j + 2 ..... j + n } occupies at time 
t the position X~+~(t) [see Eq. (2 .1) ]  and carries the m o m e n t u m  
Pi§ l + "'" +Pj+, , .  The dens i t y /~  thus contains the factor 

( n ) 
O(L-IX[)O(X-X'~'+I(t))6 P -  ~.~ Pj+s 

$ = 1  / 

(2.9) 

where 6 is the Dirac distribution. We now have to answer the question: 
what is the necessary and sufficient condit ion for merging of the n-particle 
cluster { j +  1, j + 2  ..... j + n }  into a single point mass before time t? To  
answer it, let us consider the parti t ion of this cluster into two subsets 
{ j +  1 ..... j + r }  and { j + r +  1 ..... j+n} ,  1 <~r<~n- 1, whose centers of mass 
are denoted by X}+~ and X~.f~+~, respectively. Suppose now that the 
trajectories of these centers of mass do not cross before time t, so that  

X}+ l(t) < Xj~+7+ l(t) (2.10) 

Then at time t there are masses with positions not exceeding X;+ ~(t), and 
there are also masses whose positions are larger than or equal to 
X~+rr+~(t). Hence, if the inequality (2.10) holds, particles { j +  1 ..... j + n }  
cannot merge in a single mass before time t. If, however, the inverse 
inequalities 

x j ' +  ~(t) > / x T + r +  , ( t ) ,  r = 1, 2 ..... n - 1 (2.11) 

are s imul taneous~  satisfied, a single point  mass M= m j + l +  ... +mj+, 
must have been formed within the time interval (0, t]. Indeed, the 
occurrence of two or more  isolated aggregates would necessarily imply one 
or more  inequalities (2.10). Hence, the set of n - I  inequalities (2.11) 
represents a necessary and sufficient condit ion for merging of the n particles 
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in a single mass. The characteristic function associated with (2.11) has the 
form 

n - -  1 

l-I O{X~+ ,(t)- Xj'+,+ 1(/)} (2.12) 
r = l  

The different values of j and n correspond to different events. So, taking 
into account the restrictions (2.7), (2.9) and the characteristic functions 
(2.8), (2.12), we arrive at the formula 

lal(X, P, M; t lL) 

j n = l  

mj+s ) 
s ~ t  

.r 1 

x f i  O{ -L-X~_ ,+~( t ) }O{X~+n+, ( t ) -L  } 
r = l  

"-' }) 
x [ 1 0 { X } +  ,it) - X')~+;+ ,(t) (2.13) 

$ = 1  

where again the brackets ( . . . )  denote the average over the initial 
ensemble. 

In this paper we shall consider a particularly simple initial condition 
where all the particles have the same mass 

mj=m (2.14) 

and are distributed on a regular lattice with a lattice constant a, 

xj=ja (2.15) 

The initial momenta pj are supposed to be uncorrelated. The probability 
density for finding particle j with momentum pj will be denoted by ~o(pj). 
We assume that ~0 is a symmetric function 

~ ( p ) = ~ ( - p )  (2.16) 

The formula (2.1) defining the position of the center of mass of the 
r-particle cluster { j +  1, j +  2 ..... j +  r} takes the form 

o1(  ) 
X}+'( t )=(2j+ l +r)-2 +-~m s t pj+s t (2.17) 
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The characteristic function (2.5) thus takes the form 

{ o1(  ) } 
f i  0 (2 j+l+r)5+~-~m ~ pj§ t - L  

r = l  s I 

xO --L--(2j+ l - - r )~+  Pj-c+, t (2.18) 
rm s 1 

In order to evaluate the probability /al~ [see Eq. (2.6)] we have to 
average the function (2.18) over the initial distribution of momenta. The 
probability for finding particle j + 1 within [L, oo) reads 

limo~ ; dpj+l ... ~ dpj+NtP(Pj+m)...tP(pj+u) 

x 0 p j+ , -g - -~ , [2p (L - ( j+ l /2 )a ) - rm]  (2.19) 
r = l  s = l  

where p denotes the mass density, 

m 
p = - -  (2.20) 

r 

From now on we introduce the total momentum of the r-particle clusters 
as a new integration variable 

Pc = L PJ+, (2.21) 
s = l  

The probability (2.19) can be then expressed in terms of the function 

~,m ; ~ ,  ... I ~ ~/~,l ~/~..- ~,~... ~ -  ~_ ,~  J( Y; t)~- 

.,,,rm } 
x 0 Pr--4--Z~,(2pY-rm) (2.22) 

r = l  

and it is equal to J ( L - ( j +  1/2)a; t). The existence of the limit (2.22) is 
immediate: it is readily verified that the sequence on the right-hand side of 
(2.22) is positive and monotonically decreasing as N ~ o o .  Note that 
J(Y; t)~< 1. In a similar way we can show that in the case of the initial 
conditions (2.14)-:.(2.16) the probability for finding particle j within 
( - 0 % - L ]  equals J ( L + ( j +  1/2)a; t). The general equation (2.6) thus 
becomes in this case 

I~m~( t lL )=~ ,J (L- - ( j+ l /2 )a ; t ) J (L+( j+l /2 )a ; t )  (2.23) 
i 
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In order to write down the formula for the density #t(X, P, M; t lL)  
we have to consider the average over the initial momenta of the charac- 
teristic function (2.12), which takes the form [see Eq. (2.17)] 

0 n sY'l Pj+s -- - -  (nm -- rm) (2.24) 
r = l  s 1 p / + s -  = 2pt 

Introducing again the integration variables (2.21), we find that the average 
over momenta of the characteristic function (2.24) under the constraint 

~ P j + s = P  (2.25) 
s = l  

reads 

I(P, M; t) = ~ dP , . . ,  f dP. ~o(P, ) q~(Pz - Pz )""  q~(e. - P . - ,  ) 6(P - P,,) 

x 1--I 0 P r -  p _ r m  r=, ~pt ( M -  rm) (2.26) 

where M=nrn.  When n =  1 Eq. (2.26) reduces to 

I(P, m; t) = ~p(P) (2.27) 

I(P, M; t) is the probability density for the formation of mass M with 
momentum P out of the initial cluster { j +  1, j +  2 ..... j +  n}. 

In terms of the functions J and I the general formula (2.13) for #t in 
the case of the initial conditions (2.14)-(2.16) becomes 

ttl(X, P, M; t lL)  

= O ( L -  [XI) ,~ ~ { 6 ( M - n m )  I(P, nm, t) 

• X -  t -  j +  a -  

•  
n m  )} 

a - - - ;  t (2.28) 
P 

In what follows we shall be interested in the probability to find within 
the interval ( - L , L )  exactly one particle whose momentum and mass 
belong to the intervals [Pl ,  P2] and [MI,  M2], respectively (Pl <P2, 
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MI<M2). Denoting this probability by #~I(P~,P2;Mt,M2;tIL) and 
using Eq. (2.28) we find 3 

/alll(PJ, P2; Ml, Mz; tlL) 

L "-dP dMpt(X,P,M;tIL) = dX 
- L  ~ g l  

f;'- ( ( 1 )  nm Pt ) 
= E E dPO L -  j+~ a+~p+-~m 

M l ~ n m ~ M 2  j 1 ( )( ,,m) • nm;t)J L+ j+ a;t J L -  j+ a - - - ; t  (2.29) 
P 

The analysis presented above can be generalized in a straighforward 
way to derive the formula for the probability density/a k for finding in the 
interval ( - L ,  L) at time t exactly k particles with masses Mi, momenta Pi, 
and positions Xi, i =  1 ..... k. Adopting the initial conditions (2.14)-(2.16), 
one finds for X~ < Xz < ... < Xk 

~k(Xt, Pl, Ml ..... Xk, Pk, Mk; t[ L ) 
k - I  

= o ( x ,  + L)  I-I o ( x , + ,  - x i )  O(L - Xk)  
i = 1  

x~...~j ,=,~ {6(Mi-nim)l(Pi, nim;t) 

•  Pi t - - ( J + ~ ) a - (  nl+ ''' +ni- m P ) }  

( ( ~ )  ) ( ( ~ )  m ) 
• L+ j+ a;t J L -  j+ a-(hi+ "''+nk)--,'t (2.30) 

P 

Equation (2.30) shows that all distributions/~k, k = 1, 2 ..... can be expressed 
in terms of the two functions I(P, M; t) and J(Y; t). The next section will 
be devoted to the study of their properties. One could use Eq. (2.30) to 
calculate the number density F(X~, P~, M~; t) of particles with given mass 
and momentum as well as higher-order correlation functions. The exact 
formula involves, however, all distributions ~k, ~8~ 

F(1;t)=l~l(1;tlL)+ ~ kfd2.. . fdk#k(1,2 ..... klL) (2.31) 
k = 2  

ptk~ denotes the probabilities, while/~k refers to probability densities. 

822:76/1-2-31 
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where j-= (X./, Pj, Mj), j =  1, 2 ..... We shall not analyze this complicated 
problem here, focusing our attention on the simplest probabilities #c~ ) 
and #I (X ,  P, M ;  t l L ) .  

3. R A N D O M  W A L K S  IN M O M E N T U M  SPACE 

As already remarked, the description of the state of the aggregating 
gas constituted initially of equal masses distributed on a regular lattice 
requires the knowledge of just two functions, I ( P , M ; t )  and J ( Y ; t ) ,  
defined by Eqs. (2.26) and (2.22), respectively. It turns out that their 
properties can be conveniently analyzed with the concepts of one- 
dimensional random walks with absorbing barriers. 

Let P , = p ~ +  . . .  +p, ,  be the random walk in momentum space 
starting at Po = 0, defined as the sum of independent and identically dis- 
tributed momenta p , ,  r =  1, 2 ..... n, with distribution q~(p); P,, represents 
the total momentum of a mass M = n m  which has been constituted by 
merging of n initial masses m. The epochs of this random walk are not 
labeled by the physical time t, but rather by the sequence of increasing 
masses r , = m r ,  r =  1, 2 ..... n, of initial r-particle clusters moving with 
momentum P ( z , )  = P ,  =p~ + . . .  +Pr" With this concept in mind the struc- 
ture of Eq. (2.26) permits us to interpret I (P,  M ;  t) dP as the probability 
for a random walk starting from P0 = 0 at Zo = 0 to end between P and 
P + dP at the epoch z,, = nm = M ,  overcoming the barrier 

F P  M - z , - 1  
r = l ,  2 ..... n - 1  (3.1) 

Similarly, the function J(Y; t) can be looked upon as the probability for a 
random walk starting from Po = 0 at the epoch ro = 0 to stay above the 
barrier 

2 p Y -  z ,  
P(r,)  1> z, - - ,  r = 1, 2 .... (3.2) 

2pt  

for all subsequent epochs. 
The study of such discrete-"time" random walks for general distribu- 

tions r is a nontrivial problem. To make progress we assume from now 
on that the initial distribution of momentum corresponds to thermal 
equilibrium at inverse temperature fl, 

~ ,,,( p ) = ( fl/2rtrn ) 1/2 exp(-f lp2/2m) (3.3) 
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In this case the change of variables 

P r ~  P r + r - P  (3.4) 
n 

in Eq. (2.26) yields the relation 

I(P, M; t )=  exp(-f lPZ/2M) I (P = O, M; t) (3.5) 

It will thus be sufficient to study the function 

I , . (O ,M; t )  

= I dP, ...  / dP ._  , <p.,(P,) <P,.(P2- PI) ' "<P. , (P , , - I  - P, ,-2) <P,,,(P,,- ,) 

H{ } x 0 P ~ -  rm 
r = l  ~l ( M -  rm) (3.6) 

We have added the index m to I(0, M; t) to make explicit its dependence 
on the size of the initial mass. In the whole subsequent analysis the mass 
density p = m/a is considered as a fixed parameter. Moreover, in Eqs. (2.22) 
and (2.26) p enters exclusively through the combinations pt and pY. 
A change of p is equivalent to a change of scale for the variables t and Y, 
and thus we can put p = 1/2 without loss of generality. Similarly, we shall 
use the notation J , , (Y;  t) for the function (2.22). 

The choice of the Maxwell distribution (3.3) implies the following 
basic scaling properties of the functions I,, and J,,,: 

I,,(0, M;  t) = t - l / 3 I m t - : / 3 ( O  , Mt -2/3; 1 ) (3.7) 

J,,( Y; t) = Jmt-2/~( Yt -2/3; 1 ) (3.8) 

The equalities (3.7) and (3.8) follow directly from the identity 

O \ P - rmt ( M -  rm) )  = O(Prt-1/3 _ rmt-2/3(Mt-Z/3 _ rmt-Z/3)) (3.9) 

and the relation 

q~ ,,(P) = t - I /3q)m, -Z /~(e t  -1/3) (3.10) 

Equations (3.7) and (3.8) show the priviledged role of masses and distances 
of order t 2/3 in the dynamics of aggregation. In particular, Eq. (3.7) implies 
that looking for the formation of masses M of order t 2/3 at time t is equiv- 
alent to looking for the presence of masses of order one at time t = 1 with 
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the initial masses scaled down to m t  -2/3. As the mass density p = m/a is 
kept constant, this implies also the scaling of the interparticle distance to 
at-2/3, and thus the approach to the continuum limit. Owing to the scaling 
properties (3.7) and (3.8), we 
of two functions 

I,,,(M) 

J.,(Y) 

can further reduce our analysis to the study 

= I . , ( P = O ,  M;  t =  I ) 

= J , , ( Y ;  t =  1) 
(3.11) 

The main observation at this point is that the functions Ira(M) and 
J , , ( Y )  can be expressed in terms of conditional Wiener measures of 
appropriate sets of Brownian paths P(r). Indeed r ~ - Pr) is nothing 
else than the distribution of the increment of the Brownian path P(zr+ 1 ) -  
P(zr) corresponding to the "time" step z r + , - r ~ = m .  The set corre- 
sponding to Im(M) is composed of paths starting and ending at the origin, 
P(O) = P ( M ) =  0, and being above the parabolic barrier 

f M ( r ) = z ( M - - ' c )  (3.12) 

at discrete "times" rr = rm, r = 1, 2 ..... n -  1, M =nm.  We thus find 

I , , , (M)=E, . ( {P( r~ )>~fM(rr ) , r=I  ..... n-1}IP(O)=O;P(M)=O) (3.13) 

where E,.({ ... } IP(M,)  = P~; P(M2)  = P2) denotes the expectation value 
with respect to the conditional Wiener measure for paths starting from P~ 
at "time" Mj and ending in P2 at "time" M2. In the same way we identify 
Jr,(Y) as the measure of paths starting from P ( 0 ) = 0  and being above the 
barrier f r ( r ) = z ( Y - z )  for all discrete "times" r r = r m ,  r = l ,  2 ..... The 
corresponding formula reads 

J m ( Y )  = l irn  f dP E,.({P(rr) >~fv(r~), r = I ..... N} [ P (0 )=  0; P(ZN) = P) 

(3.14) 

It is clear from the scaling relations (3.7), (3.8) that the long-time behavior 
of the aggregation process is governed by the asymptotic properties of the 
functions Ira, J,,  for m going to zero. So in the next section we derive a 
number of bounds on I,,,  J, ,  which will be the basis for the discussion of 
the time asymptotics of probabilities plo~ and/a I'~ 

4. L O W E R  A N D  UPPER B O U N D S  

Equations (3.13) and (3.14) permit us to derive bounds on the relevant 
functions Ira(M) and am(Y). Upper bounds are readily found by dropping 
some of the constraints in Eqs. (3.13) and (3.14). Assuming for convenience 
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n even and keeping only the requirement for the paths to overcome the 
highest point fM(M/2)= M2/4 of the barrier (3.12), we find the inequality 

I,.(M) <<, E..( { P(M/2) >~ fM(M/2) } I P(O) -- O; P(M) = O) 

2 dP exp(-2f lPZ/M) <~ (Ci/x//-M) exp( - C2 M3) (4.1) = ( B / t o M )  : / .  

where Ct, C_, are positive constants (independent of m and M). In the same 
way when Y> 0 we derive the upper bound 

J,,,(Y) ~< lim f dP E,.( {P(Y/2) >1 Y2/4}lP(O) -- 0; P(rN) = P) 
N ~  

=(fl/rcY) '/2 [~ dPexp(-flPz/Y)<.NC, exp ( -C2Y  3) (4.2) 
d y 2 / 4  

uniformly with respect to m. 
In order to obtain lower bounds, we strengthen the constraints in 

Eqs. (3.13) by requiring that the paths remain above the barrier fM(r) for 
all r in the interval m ~< r ~< M - m ,  and not only in the discrete points r,. 
Thus 

I,,(M) >t E,.({ P(r)  ~fM(r),  m ~< r ~< M--  m}[ P(0) = 0; P(M) = O) 

= dPl dP,,_ l P,,,(PI) 
r  ) f( M - m ) 

x K(m, Pj ; M--m,  P._~ ) ~o,.(P ._ ~) (4.3) 

where 

K(MI, PI; M2, P2) 

=E,.({P(r)>~fM(T), M, <~r<~Mz}JP(M,)=P,, P(M2)=P2) (4.4) 

is the measure of the set of paths starting from Pl at "time" M~, ending in 
P2 at M2, and remaining above fM(r) for all "times" M~ ~< r~<M z. Per- 

forming in Eq. (2.17) the change of variables Pl = v / ~  u, P , _ ,  = x / ~  v, we 
eventually find 

I,,,(M) >i du tp(u) dv cp(v) K(m, x / ~  u; M - m ,  ~ v) 
(M--m) (M--m) 

(4.5) 

where 
q~(u) = (fl/2n) u2 exp(-fluZ/2) (4.6) 
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It is shown in Appendix A that as a consequence of the Feynman-Kac 
formula the "propagator" K(M~,P~;M2, P2) is proportional to the 
integral kernel of the semigroup generated by the differential operator 

1 d 2 
l id = 2# dZ ---~ § 2#Z (4.7) 

Dirichlet boundary conditions at Z = 0 .  This on L2(I-0, oo), dZ) with 
implies that 

K(0, P~ =0;  M, P2) = K(0, P~; M, P 2 = 0 ) = 0  (4.8) 

and thus for M > 0 and m small enough 

K(m, x//--m u; M -  m, x//--m v)= muvG(M) + O(m 3/2) (4.9) 

where 
&2 

G(M) OP I OP---~_ K(O, Pl; M, P2)le~=&=o (4.10) 

is strictly positive for any M > 0  [see Appendix B for the justification of 
(4.9) and an explicit lower bound for G(M)-]. Expanding the right-hand 
side of (4.5) with the help of (4.9) and keeping the lowest order terms, we 
find 

I,,(M) >_.tim G(M) + O ( m  3/2) (4.11) 
2rt 

The estimate of the remainder in (4.11) is uniform with respect to M for 
M~>Mo>0.  

In the same way we find the lower bound for J,,(Y) by requiring that 
the paths stay abovef r ( r )  for all r~>m 

J,,(Y)>~ iim f dP E,.({P(r)>~fr(~),m<<. r<~Nm}lP(O)=O;P(Nm)=P) 
g ~ oe 

= dP~ ~o,,,(P~ ) lim dP K(m, P~ ; Nm, P) 
y l m )  N ~  oc �9 ) . ( N m )  

= du tp(u) lim dP K(m, u; Nm, P) (4.12) 
( Y - - m )  N ~ o o  m ( Y - N m )  

Using (4.8) again, we see that K(m, ~ u; Nm, P) with Nm = M fixed is of 
the order ~ / ~  as m --, 0, and the same will thus be true for the lower bound 
for J,,,(Y). More precisely, it is shown in Appendix B that 

J,,(Y) >>- (flm/2~) ua S(Y) + mR(m, Y) (4.13) 
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When Y~<0 one has S(Y)=2f l  IY[ and R(m, Y )=O(( IY I  + 1)2), while for 
Y>0  both S(Y)  and R(m, Y) are O(exp(-CY3)) .  The estimates of 
R(m, Y) are uniform with respect to m for m small enough. From (4.13) 
and the above remarks one can derive the lower bound for the product 
Jm(Yl - Y )  J,,(Y2+ Y) appearing in Eqs. (2.23), (2.29), defining the 
probabilities #~o~ and/~tl~. One finds 

tim 
J,,( YI - Y) Jm( Y2 + Y) >1 ~ S( Yl - Y) S( Y2 + Y) + m~/20(exp( - C ] y13)) 

(4.14) 

provided Y~ and Y2 are bound to compact sets. 

5. LONG-T IME CHARACTERISTICS 

The estimates of functions I,, and J,, now will be used to derive 
asymptotic properties of probabilities /~to~ and ptl~ in the long-time limit. 
Let us begin the discussion by considering the probability #t~ given 
by Eq. (2.23), to observe an empty interval ( - L ,  L) at time t. The scaling 
property (3.8) suggests that intervals of length 2L ~ l 2/3 play a special role 
in the dynamics of the gas. We shall show now that this is indeed the case. 
To this end let us first study the behavior of the probability #co~ in the case 
where L =  Lt 2/3, for fixed /7. Using the scaling (3.8), we rewrite Eq. (2.23) 
in the form 

where 

/ll~ I L) = ~ Ja,(L- ( j+  1/2) a) Ja,(E + (j + 1/2) a) 
J 

(5.1) 

dl =mt  -2/3, Et = at -2/3 (5.2) 

The inequality (4.14) yields the estimate 

Vc~ I Lt 2/3) >1 (flr~/2zt) ~ S ( E -  ( j+  1/2) fi) S(/~+ ( j +  1/2) fi) 
J 

As already noted, looking for L of the order t 2/3 amounts to scaling down 
the initial mass m and spacing a to the infinitesimal quantities r~ and ~i. 
Since the bound (4.14) provides the factor r~=p~=~i/2 in front of the 
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sums, it is clear that for t ~ o o  the right-hand side of inequality(5.3) 
converges to 

~--I § dYS(E- Y)S(L+ Y)>O (5.4) 
4 7 [  - -  oo  

We conclude that in the long-time limit 

ktc~ 2/3) >I C > 0 (5.5) 

This means that there is a nonvanishing probability to find empty intervals 
of the order t 2/3, 

The particular role of the length scale 12/3 appears in the fact that for 
larger intervals 

L = Lt ~, ct > 2/3 (5.6) 

the probability plo~ asymptotically rapidly vanishes. To show this we use 
J,, <.% 1, the scaling (3.8), and the upper bound (4.2), finding 

/a~~ ~ J,,,(L-(j+l/2)a;t)J,,(L+(j+l/2)a;t) 
j=o  

<.%2 ~ J,~,(Lt-2/3 +(j+ l/2)f,) 
j=o  

<-%2C1 ~ exp{-C2[Lt-2/3 +(j+ 1/2)&] 3} 
j=o  

<~2Ctexp{-C2(Lt-2/3) 3} ~ exp{-C2[(j+l/2)d] 3} (5.7) 
j=o  

The sum in the last term behaves like ti i t2/3 for t large. We thus see 
that (5.7) tends to zero as t ---, oo when the condition (5.6) if fulfilled. More 
precisely, we conclude 

lal~ for ~>2 /3  (5.8) 

The estimate (5.8) implies that the intervals of the order t% ~>2/3 ,  
certainly contain particles. In view of the previous result (5.5), ct=2/3 
appears as a threshold value. We can conclude that although a typical 
(average) distance between the particles can be of the order /2/3, it cannot 
be larger than that. 

Let us turn now to the study of the probability ~,1 given by 
Eq. (2.29). An interesting question is what size of masses one can expect to 
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observe in the long-time regime t--* ~ .  To begin with, we analyze the 
possibility of finding a mass of the order t ~ with fl > 2/3. Using Eqs. (3.5) 
and (3.7), and the fact that J,, can be majorized by 1, and extending the 
momentum integration to the whole range ( - ~ ,  + ~ ) ,  we find from 
Eq. (2.29) the inequality 

/~lll(Pi, P2; Mi,  M2; tl L) 

2L 
<~ - -  (fl/2n) 1/'- ~ (nmt -2/3)1/2 Im,-2;3(nmt-2/3) (5.9) 

a Mt<~nm<~M2 

The straightforward application of the upper bound (4.1 ) yields the estimate 

2L / M 2  - MI \ 
/ l("(Pt,  P2; M , ,  M2; tlL)<~ C , - ~ - (  m -) exp{ - C z ( M l t - 2 / 3 )  3 } 

% 

(5.10) 

Hence, when M~, M2 ~ t ~ fl > 2/3, the probability tends to zero in the limit 
t ~ ~ for arbitrarily large intervals 2L .-- t% cr >/0, owing to the exponential 
factor exp(-Ct3t~-2). The important conclusion is that the process of 
aggregation has asymptotically zero probability weight to produce in any 
interval masses larger than t 2/3. 

We consider now the probability of finding a particle with mass of the 
order t 2/3 and momentum of the order t 1/3. Using the scaling (3.7), (3.8), we 
rewrite Eq. (2.29) in the form 

]a(l)(/~l tl/3, 1~ t2/3, 1~2t2/3; t lL)  

z f: = y" dPexp{ - f l p2 /2mf i }  Ia,(nrh) 

x O(Lt- 2/3 - -  [(j + 1/2) d + mh + P/nrh[) 

•  (5.11) 

where P~, P2, and /9/2>.M~ > 0  are fixed and rh =mr -2/3. Application of 
the lower bounds (4..11) and (4.14) introduces the product of infinitesimals 
n-? = rh~/2 in front of the double summation. So, when t --* ~ the right- 
hand side of Eq. (5.11 ) is larger than or equal to 

x G(M) S(Lt  -2/3 + X) S(Lt-2/3 _ X -  2M) (5.12) 
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Introducing a new integration variable Y =  X +  M +  P/M, we then arrive 
at the long-time estimate 

~/(1 )(,PI tl/3, /D2tl/3; /~1 I2/3, 1~1212/3; t l L) 

where /7= Lt -2/3. The main conclusion from (5.13) is that there is a non- 
vanishing probability to find particles with momentum ~ l  1/3 and mass 

t 2/3 in the intervals of length ~ t 2/3. If we observe particles in a fixed 
interval of length 2L, the appropriate form of (5.13) is 

2L 
~(I )(PI tl/3, /D2 tl/3; "~tl /2/3, )~t2 t2/3 ; tlL)>1 C~_/3 (5.14) 

The estimate (5.13)-(5.14) dealt with the probability of finding large 
masses M ~  t 2/3 as t --+ o0. We may also ask about the asymptotic survival 
of an initial mass m. To discuss this point, we first provide a lower bound 
for the probability /a(l)(m; t lL)  of finding a mass m in ( - L ,  L) that has 
not collided up to time t. For this, we start from the formula (2.29) where 
we keep only the term n = 1 and integrate over all momenta. Using the 
scaling property (3.8) and the lower bound (4.14) and replacing asymptoti- 
cally the j summation by an integral gives 

p(~)(rn ; t lL )  

• ) expt--~----m ) [ S ( L t - ' n +  X) S ( L t - 2 1 3 - X ) + O ( t - u 3 ) ]  (5.15) 

Performing the change of variables p = rout -u3, X =  Y+ u, one finds that 
the right-hand side of (5.15) behaves as (up to a constant factor) 

2 L [  ~ d u S ( u ) S ( - u ) ,  t--+oo (5.16) 
I J - c :  

Therefore we conclude that there exists a positive constant C such that 

2L 
/ali)(m; t] L) >/C - -  (5.17) 

t 

for t sufficiently large. 
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More  generally, we can estimate the probability/1(~)()0'1 t ~', )~2t>'; t l L) 
of finding a mass of order t ~', 0 < y < 2/3, in ( - L ,  L). Its lower bound is the 
same as (5.13), replacing there the mass integration limits by l~ljl ~'-2/3, 
j =  1, 2, A~r2>)14"~>0, and extending the m o m e n t u m  integration to 
( - ~ ,  + or). After the change of variable P = Mu, this bound becomes 

2 - dYJ~,,','-'/3 d M M G ( M )  f d u e x p  

x S(Lt  - z/3 _ M - u + Y ) S (L  t - 2/3 - -  M + u - Y ) (5.18) 

Clearly, for 0 < y < 2/3, the behavior  of (5.18) for large t is governed by that  
of G(M) for small M. Since G ( M ) ~  M -3/2 as M--* ov (see Appendix B), we 
obtain that  (5.18) behaves asymptotical ly as 

2L f ~,,,.- z<.~ d M  M -  I/2, t2/3 ~ du S(u) S ( - u )  J~t,,,'-'-,3 t --* oo (5.19) 

implying 

/1(I I()~t t ~', )0~_ t~'; t l L)/> C - -  
2L 

0 < ~, < 2/3 (5.20) 
t I -?/2, 

It is interesting to note that the estimate (5.20) interpolates between the 
result (5.14) (i.e., a nonvanishing probabil i ty of finding masses of order t 2/3) 
and the bound (5.17), which holds in fact for any aggregate composed of 
a fixed number  of initial masses. 

Summarizing the results just obtained for masses of smaller order than 
t 2/3, we can say that in an interval ( - L ,  L), the whole spectrum of masses 
M ~ t ~' will be present with probabilit ies as large a s ' t - 1  +~.n, 0 ~< ~, ~< 2/3. In 
particular, aggregates made of a finite number  of initial masses will still be 
found at any time t with a probabil i ty not smaller than t-1.  

To  conclude this section, we observe that  (5.14), (5.17), and (5.20) 
have the following obvious implication for the number  density f ( M ,  t) of 
particles of mass M:  

U(M, dX  dP F( X, P, M, t) t ) =  -L - , ,  (5.21) 

where F is defined in terms of the probabil i ty densities #k by (2.31). This 
definition implies clearly 

MM2dMf(M,t)>~ l ' ( I ) t M  M 2 ; t l L )  
, 2L I "  I l '  

(5.22) 
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hence 

~ ' '  d M  f ( M ,  t) >1 t' -;'/'- (5.23) 

In particular, the number dens i ty f ( t )=  S~ d M f ( M ,  t) obeys the inequality 

C 
f ( t )  >1 ~73 (5.24) 

in accordance with the fact discussed previously that the average distance 
between the particles can be at most of the order 12/3. 

6. C O N C L U D I N G  R E M A R K S  

A full analysis of the (one-dimensional) ballistic aggregation process is 
far from having been completed by the present study. We comment on 
some open questions and possible developments. 

Although the formulation of the problem given in Section 2 is quite 
general and allows for arbitrary initial states, we have focused our atten- 
tion on a model of equal and equidistant initial masses with Maxwellian 
velocity distribution. For this model, our most significant results are the 
lower bounds to the asymptotic mass distribution for large time obtained 
in Section 5: we may conjecture that the behavior given by these lower 
bounds is also the exact one. As mentioned in the introduction, a proof of 
this conjecture requires better upper bounds than (4.1) and (4.2). The latter 
bounds are two crude because they do not take into account the effect of 
the barrier (3.12) in the neighborhood of z = 0 (i.e., for small masses). 

The next task would be to obtain information on spatial and momen- 
tum correlations between different particles by an analysis of the higher- 
order probability distributions Pk. Note that a more detailed knowledge of 
the particle density (5.21) requires a control of the whole series (2.31), and 
in particular suitable upper bounds on the #k. It would be interesting to 
confront the rigorous analysis with the conjecture suggested by the numeri- 
cal simulations and the work of ref. 4 that the following limit exists: 

lim 14/3f(Ml 2/3, t) = ~b(/~) (6.1) 

and to determine the exact form of the scaling function ~,(ASt). 
In refs. 1 and 2 it has been advocated that the t 1/3 scaling for momen- 

tum results in the law of large numbers. We find indeed that masses of 
order t 2/3 propagate with momenta t 1/3 [at least in the sense of the estimate 
(5.13)-]. However, there is no indication in (5.13) that the corresponding 
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momentum distribution should be normal. This is not surprising in view of 
the kinematical constraints (elaborated in Section 2) necessary for the 
formation of an aggregate. 

A peculiarity of our model is dealing with a single initial particle con- 
figuration. Still keeping the Maxwellian distribution of velocities, it would 
be natural to distribute the initial according to Poissonian statistics, i.e., to 
have the state of a free gas at the initial time. Because of the Maxwellian 
distribution, the mathematics of this model will still be reduced to the 
study of the Wiener integral of some functionais of the Brownian paths. 

As a further generalization, we may allow for nonequilibrium momen- 
tum distributions. As explained in the beginning of Section 3, this involves 
now the determination of the asymptotic behavior of classes of functionals 
of more general random walks than Brownian motion. Such a generaliza- 
tion is necessary to establish the claim of universal long-time behavior 
supported by the simulations. 

Another line of attack is to examine the implications of the present 
analysis for the structure of the particle correlation functions and the exact 
hierarchy of equations that governs their dynamics. Aggregation in an 
external force field and in higher dimension than one are also challenging 
problems. We believe that some of these questions are amenable to a math- 
ematical control by the methods developed in this paper and deserve 
further study. 

A P P E N D I X  A 

Let f ( r )  be a twice differentiable function and consider the measure 
K(MI, P~; M2, P2), (4.4), of the paths P(r)  that are above f ( r )  for M~ ~< 
r ~<M2 [with P(MI)= Pl, P(M2)=P2 ,  e~ >~f(Mi), e2>~f(M2)]. We 
introduce in (4.4) the paths Z(r) translated by the time-dependent function 
f ( r ) ,  

Z(r)  = P(T)- - f ( r )  (A.I) 

Writing in formal terms that the Wiener measure is proportionnal to 

H dP( , ) exp  2-M, \ d~ / J 
r = m  I 

= H dZ( lexp - [ +2-- + 
�9 = M ,  oM, L\ d, / d, d, 

(A.2) 
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and after an integration by parts, one obtains 

K(MI, Pi; M2, P2) 

x E,. [{Z(v)~>0, M, ~<~<M2} 

• Z(M,)=ZI;Z(M2,=Zz] (A.3) 

with Z1 = Pl-f(Ml)>~ O, Zz= P2-f(Mz)>~O. The steps leading to (A.3) 
can be justified by performing them in the polygonal approximation of the 
Wiener integral. 

According to the Feyman-Kac formula, the functional integral in 
(A.3) is given by the fundamental solution Go(M 1, Zl; M2, Zz) of the 
differential equation on the half-line Z, ~> 0, ~9~ 

- ~  2flOZ~ flf"(M,)Z, Go(Mt,Z,;M2, Zz)=O (A.4) 

with Go(Mj, Z~; M,_, Z2)IM, = M2 = 6(Z~ -- Z_,) and Dirichlet boundary 
condition at Z~ = 0, 

GD(MI,O;Mz, Z2)=Go(M~,ZI;M2,0)=O, M2>MI (A.5) 

In the case of the quadratic function (3.12) with M~ = 0  and Mz= M, we 
have Pt = Z~ and P_, = Z2 and (4.8) follows. Moreover, the corresponding 
differential operator Ho, (4.7), can be interpreted as the Schr6dinger 
operator for a quantum mechanical particle of mass fl constrained to a 
half-space and subjected to a uniform gravitationnal field of intensity g = 2 
(=p-~) .  The solution of this quantum mechanical problem is known in 
terms of Airy functions I~~ and it could be used to derive the properties of 
(4.4). We will instead derive bounds in a direct way by the methods of 
Appendix B. 

As a simple application of the formula (A.3), we consider the case of 
a linear barrier f ( r ) =  br + d. Then the solution of (A.4) is the free Dirichlet 
kernel 

G~ Zi ; M2, Z2) 

=_ G~ - -  MI, ZI; Z2) 

fl(Zl - Z2)2"~ _ exp ( 
2(Mz - MI)J 2(M2 - M t ) J J  

(A.6) 



1D Ballistic Aggregation 471 

and 

K ( M , ,  P, ; M2, P_,) = exp{ f l [b(Z ,  - Z,_) - �89 - M, )3 } 

x G~ - Mr ,  Z l ;  Z,_) (A.7) 

with Z~ = P,  - bMi  - d, Z2 = P2 - bM2 - d. In particular, the measure of 
the set of paths starting from P~ at M~ that are above br + d for all r >t M~ 
is 

lira dP,_ K ( M I ,  Pi ; M2, P2) 
M2~r162 M2+d 

=exp(flbZl)  lim exp dZ2 
M ~  

x exp(-BbZ,_) G~ Z, ; Z2) 

=exp(~bZ,)lim exp\ 2M/2Sh [3 - b  

x :b du exp 

= { l - e x p ( - 2 f l l b l Z ~ ) , 0 ,  b<.NO,b>~O Z ~ = P ~ - b M ~ - d ( A ' 8 )  

The second equality follows from the change of integration variable Z2 = 
x//-M u -  b M  after the introduction of (A.6). 

A P P E N D I X  B 

We indicate the main steps to obtain the lower bound (4.13). Consider 
first the case Y>~ Yo, m<~ Yo/4, where Yo is some fixed positive number. 
The function f y ( r ) =  r ( Y - z )  is majorized by the polygonal line formed by 
its tangents at r = m and r = Y - m  (see Fig. 1): 

Ii(r) = ( Y -  2rn) r + m 2 

12(" 0 = - ( Y -  2m) z + ( Y -  m) 2 (B.1) 

I I ( Y / 2 ) = I 2 ( Y / 2 ) = ( Y 2 / 2 ) - m ( Y - m ) ,  Y - 2 m > ~  Yo/2 (B.2) 

The following inequality expresses the fact that the measure of the set 
of paths abovefv(z )  is larger than that of the paths above the line formed 
by ll(r), m<<.z<~ Y/2, and 12(z), z~> Y/2: 
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lim dP2 K(m, Pl; M, P2) 
M ~  : r . . .  { M )  

>1 lira dP2 dPKl{m, Pl; Y/2, P) K2(Y/2, P;M,P,_) 
M ~ ,3o 2 1 M )  II1 t ' / 21  

f; = dPK,(m, P,; Y/2, P+I,(Y/2)){1 - e x p [ - 2 ~ P ( Y - 2 m ) ] }  

= e x p [ - B Y 2 (  Y -  2m)/4] exp[BPt( Y -  2m)] (B.3) 

2 x dPexp{-Be(Y-2m)}{1  - e x p [ - 2 B P ( Y -  2m)] } 

x GO{( Y -  2m)/2, PI - m( Y -  m); P) (B.4) 

In {B,3), K~(m, P~; Y/2, P) [resp. K2(u P;M, P2)] is the conditional 
measure of the set of paths that are above/~(r), m ~< r ~< Y/2 [resp. above 
/2(r), r~> I"/2]. The first equality results from (A.8), and we have written Kt 
with the help of the formula (A.7). Since G~ is given by (A.6), the lower 
bound (B.4) is an explicit function of Pt ,  1I, and m. In order to use it in 
(4.12) we must set P~=x/mu in (B.4) and estimate it as m--*0. This 

P 

/ 

/ 

i I 

P~ i Ii 

\ J  -,,. 

f 

Fig. 1. Brownian motion above a parabolic barrier: the case Y>0. 
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involves expanding G~ Po; P) in the neighborhood of Po = 0. A limited 
Taylor expansion of (A.6) leads to 

G~ Po;e) =P o 3~-G(M, Po; P po=O +P20(P+I )  (B.5) 

provided that M remains bounded away from the origin. This gives, with 
Po=x//--mu-m(A-m) and M =  Y/2-m>~ Yo/4> 0, 

GO(( Y -  2m)/2, Pt - m( Y -  m); P) 

=x//--mu(fl3/ny3) I/2 2Pexp(-f lP2/y)+mR(u,  Y, P, m) (B.6) 

where the rest R is polynomially bounded in all its variables. We now 
insert (B.6) into (B.4), and then this whole expression into (4.12), and 
expand in the neighborhood of m = 0. The dominant term is obviously of 
order x//-~, and the rest of the expansion is under control because of the 
following reasons: 

(i) The P integral convergent because of the factor 
exp[ - t iP (  Y -  2m)]. 

(ii) The u integral is convergent of the Gaussian 
exp(-flu2~2). 

(iii) An possible growth by the prefactor 
exp( -  Y3fl/4) as 

i s  

because 

with Y is killed 
Y--. oo. For instance, one uses (k>~0) 

exp ( -  Y3fl/4) ~o du U k exp[ --fl(u2/2 -- ~ uY)] 

= exp( -- Y3fl/4) f ~  du u k exp(--flu2~2) + x /~  O(exp( -- Cy3)) (B.7) 

The result of the estimate is, under the condition (B.2), 

J,, >1 (flm/27r) 1/2 S(Y) + rnO(exp( - Cy3)) 

with 

(a.8) 

poo 

S(Y) = e x p ( -  Y3fl/4) 2(fl3/rcY3) 1/2 J o  dP exp(--flPY) 

x [ 1 - e x p ( - 2 f l P Y ) ]  Pexp(-f lP2/Y) (B.9) 

We consider now the case where 0~< Y~< Yo and m <~ Y/2. We have to 
proceed differently because of the singularity of the Dirichlet kernel 

822/76/1-2-32 
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G(M, Po;P~) at M =  Y / 2 - m = O .  For this, one introduces in (B.4) the 
majoration 1 - exp [ - 2tiP( Y -  2m) ] <~ 2tiP( Y -  2m) and performs again a 
limited Taylor expansion. The additional factor Y - 2 m  precisely compen- 
sates for the singularity of the Dirichlet kernel. One obtains again that the 
remainder is finite, and that the estimate holds also in this case. Notice in 
(B.9) that S ( Y ) = O ( Y ) ,  Y~O.  

It remains to examine the case Y~< 0. We major izefv(Q by its tangent 
11(~) at T = m  (Fig. 2) 

11 (r) = - (I Yt + 2m) ~ + rn 2 (B. 10) 

One has the obvious inequality 

s; l i m  dP 2 K(m, Pl ; M, P2) 
r(t) 

I; i> lim dP 2 K(m, Pt; M, P2) 
M ~ a o  IIM) 

= 1 - e x p { - Z f l ( l Y I  +2m)[P~ +m(lYI + re ) I}  

>i 1 - e x p [ - 2 f l ( [ Y L  + 2 m ) P ~ ]  (B.II) 

P 
I i 
I I 
i I 

Fig. 2. Brownian motion above a parabolic barrier: the case Y < 0 .  

"!7 

)- 
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where the equality results from (A.8). When (B.11)is inserted into (4.12) 

with pL = x / ~  u, one obtains 

J , , (Y )  >~ (/3m/2n) u2 S ( Y )  + toO( y2 + 1 ) (B.12) 

with S(Y) = 2/3 I Y I. 
In order to establish (4.11), we proceed as in the situation of Fig. 1 

with f r ( z )  replaced by fM(z) (0 ~< r ~< M). One obtains the inequality 

K(m, Pl ; M -  m, P2) 

~/ oo 

<~ dPKI(rn, P=;M/2, P) K2(M/2, P ; M - r n ,  P2) (B.13) 
I ( M / 2 )  

The quantities K~ and K 2 have the same meaning as in (B.3). Both of them 
can be explicitly expressed in terms of the Dirichlet kernel (A.6) with the 
help of (A.7). Once this is done, one sets p~ = x//-m u and Pl = x//-~ v [see 
(4.5)-] and performs a limited Taylor expansion. For M > ~ M o > 0  and m 
small enough, one can estimate the two Dirichlet kernels occurring in 
(B.13) by formulas corresponding to (B.5) and (B.6). Clearly, the dominant 
term is of the order muv with a remainder 0(m3/2). This justifies (4.9) and 
one can work out an explicit positive lower bound for G(M) of the form 

G(M) >t C l M-3/2exp( - -  C 2 M  3) (B.14) 
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